บทที่ 2 การสังเคราะห์ด้วยแสง

กระบวนการสังเคราะห์ด้วยแสงของพืช แบ่งเป็น 2 ขั้นตอนใหญ่ คือ
ปฏิกิริยาแสงและปฏิกิริยาตรึงคาร์บอนไดออกไซด์


โครงสร้างของคลอโรพลาสต์ 
         
           คลอโรพลาสต์ ประกอบด้วยเยื่อหุ้ม 2 ชั้น ภายในมีของเหลวเรียกว่า สโตรมา  มีเอนไซม์ที่จำเป็นสำหรับกระบวนการตรึงคาร์บอนไดออกไซด์ในการสังเคราะห์ด้วยแสงนอกจากนี้ด้านในของคลอโรพลาสต์ ยังมีเยื่อไทลาคอยด์   ส่วนที่พับทับซ้อนไปมาเรียกว่า กรานุม  และส่วนที่ไม่ทับซ้อนกันอยู่เรียกว่า  สโตรมาลาเมลลา สารสีทั้งหมดและคลอโรฟิลล์จะอยู่บนเยื่อไทลาคอยด์มีช่องเรียก ลูเมน ซึ่งมีของเหลวอยู่ภายใน

      
นอกจากนี้ภายในคลอโรพลาสต์ยังมี DNA RNA
และไรโบโซมอยู่ด้วย  ทำให้คลอโรพลาสต์สามารถ จำลองตัวเองขึ้นมาใหม่และผลิตเอนไซม์ไว้ใช้ในคลอโรพลาสต์ในคลอโรพลาสต์เองได้คล้ายกับไมโทคอนเดรีย
สารสีในปฏิกิริยาแสง
            สิ่งมีชีวิตแต่ละชนิดที่สังเคราะห์แสงได้  มีสารสีอยู่หลายประเภท ซึ่งเราได้พบว่า  พืชและสาหร่ายสีเขียว  มีคลอโรฟิลล์ 2 ชนิด คือ  คลอโรฟิลล์ เอ และคลอโรฟิลล์ บี  นอกจากคลอโรฟิลล์แล้วยังมีแคโรทีนอยด์  และพบว่าสาหร่ายบางชนิดมี ไฟโคบิลิน
            แคโรทีนอยด์เป็นสารประกอบประเภทไขมัน  ซึ่งประกอบไปด้วยสาร 2 ชนิด คือ  แคโรทีน   เป็นสารสีแดงหรือสีส้ม และ
            แซนโทฟิลล์  เป็นสารสีเหลืองหรือสีน้ำตาล  แคโรทีนอยด์มีอยู่ในสิ่งมีชีวิตทุกชนิด  ที่สังเคราะห์ด้วยแสงได้ในพืชชั้นสูงพบว่าสารสีเหล่าสนี้อยู่ในคลอโรพลาสต์
            ไฟโคบิลิน  มีในสาหร่ายสีแดงและไซยาโนแบคทีเรีย  ซึ่งไฟโคบิลินประกอบด้วยไฟโคอีรีทรินซึ่งดูดแสงสีเหลืองและเขียว
            ไฟโคไซยานิน ที่ดูดแสงสีเหลืองและสีส้ม
            สารเหล่านี้ทำหน้าที่รับพลังงานแสงแล้วส่งต่อให้คลอโรฟิลลล์ เอ ที่เป็นศูนย์กลางปฏิกิริยาของระบบแสง  อีกต่อหนึ่ง   กลุ่มสารสีที่ทำหน้าที่รับพลังงานแล้วส่งต่ออีกทีให้คลอโรฟิลล์ เอ  ซึ่งเป็นศูนย์กลางของปฏิกิริยาเรียกว่าแอนเทนนา
           
          อิเล็กตรอนที่เคลื่อนที่ไปรอบๆ นิวเคลียสของอะตอมของสารสีมีอยู่หลายระดับ   อิเล็กตรอนเหล่านี้สามารถเปลี่ยนแปลงระดับได้ ถ้าได้รับพลังงานที่เหมาะสม  เมื่อโมเลกุลของสารสีดูดพลังงานจากแสง ทำให้อิเล็กตรอนเคลื่อนที่อยู่ในสภาพปกติ  ถูกกระตุ้นให้มีพลังงานมากขึ้น  อิเล็กตรอนจะเคลื่อนไปอยู่ที่ระดับนอกอิเล็กตรอนที่ถูกกระตุ้นจะอยู่ในสภาพเร่งเร้า สภาพเช่นนี้ไม่คงตัว    อิเล็กตรอนจะถ่ายทอดพลังงานเร่งเร้า จากโมเลกุลสารสีหนึ่งไปยังโมเลกุลของสารสีอื่นๆต่อไป
            อิเล็กตรอนเมื่อถ่ายทอดพลังงานไปแล้วก็จะคืนสู่ระดับปกติ  โมเลกุลของคลอโรฟิลล์เอ  ก็จะได้รับพลังงานโมเลกุลที่ถ่ายทอดมาจากสารสีต่างๆ  รวมทั้งโมเลกลุของคลอโรฟิลล์ เอ  ก็ได้รับพลังงานแสงเองอีกด้วย  เมื่อคลอโรฟิลล์ เอ ที่เป็นศูนย์กลางของปฏิกิริยาได้รับพลังงานที่เหมาะสม จะทำให้อิเล็กตรอนหลุดจากโมเลกุล  อิเล็กตรอนที่หลุดออกมานี้จะมีสารรับอิเล็กตรอน  ที่ค้นพบว่า NADP เป็นสารที่มารับอิเล็กตรอนในภาวะที่มีคลอโรพลาสต์ และกลายเป็น NADPH 
                        ระบบแสง
              ประกอบด้วยโปรตีนตัวรับอิเล็กตรอน ตัวถ่ายทอดอิเล็กตรอน และแอนเทนนา ระบบแสงI หรือ PSI เป็นระบบแสงที่มีคลอโรฟิลล์ เอ ซึ่งเป็นศูนย์กลางปฏิกิริยารับ พลังงานแสงได้ดีที่สุดที่ความยาวคลื่น 700 นาโนเมตร  จึงเรียกว่า P700 และรับบแสงII หรือ PS II ซึ่งมีคลอโรฟิลล์ เอ ที่เป็นศูนย์กลางปฏิกิริยารับพลังงานแสงได้ดีที่สุดที่ความยาวคลื่น 680 นาโนเมตร เรียกปฏิกิริยาแสงนี้ว่า P680

ปฏิกิริยาแสง
    พืชดูดกลืนแสงไว้ในคลอโรพลาสต์ ในขั้นตอนที่เรียกว่า  ปฏิกิริยาแสงให้เป็นพลังงานเคมีที่พืชสามารถนำไปใช้ได้ในรูป ATP และ NADPH 
            บนเยื่อไทลาคอยด์จะมีระบบแสง I ระบบแสง II และโปรตีนทำหน้าที่รับและถ่ายทอดอิเล็กตรอนอยู่
ซึ่งจำลองการจัดเรียงตัว
           พลังงานแสงที่สารต่างๆ ดูดกลืนไว้จะทำให้อิเล็กตรอนของสารสีมีระดับพลังงานสูงขึ้น  และสามารถ่ายทอด
ไปได้หลายรูปแบบ  สารสีในแอนเทนนาจะมีการท่ายทอดพลังงานที่ดูดกลืนไว้ จากสารสีโมเลกุลหนึ่งไปยังสารสี
อีกโมเลกุล
หนึ่ง จนกระทั่งโมเลกุลของคลอดรฟิลล์ เอ  ที่เป็นศูนย์กลางของระบบปฏิกิริยาแสง พลังงานดังกล่าว จะกระตุ้นให้อิเล็กตรอนของคลอโรฟิลล์ เอ มีพลังงานสูงขึ้น  และถ่ายทอดอิเล็กตรอนไปยังตัวรับอิเล็กตรอนเป็นการเปลี่ยนปลังงานสงให้มาอยู่ในรูปของพลังงานเคมี  นอกจากนี้พลังที่ถูกดูดกลืนไว้อาจเปลี่ยนมาอยู่ในรูปของพลังงานความร้อน  การถ่ายทอดอิเล็กตรอนเกิดได้ 2 ลักษณะ  คือการถ่ายทอดอิเล็กตรอนแบบไม่เป็นวัฏจักร   และการถ่ายทออิเล็กตรอนแบบเป็นวัฏจักร